Varying-Coefficient Single-Index Signal Regression

Brian D. Marx Department of Experimental Statistics Louisiana State University

Signal regressors for mixture experiment

- Two (2) temperatures presented (30°, 70°)
- Raw and first differenced signals

Ternary mixture experiment

- Composition based on mole fraction (m = 34)
- Ternary plot: 3 pure + 12 edge + 19 interior

Unique structure and challenges

- Primary goal: Quality external prediction
- *Curious*: y is measured *exactly* (at molar level, by design)
- Small m: Only have m = 34 mixtures
- Large p: Rich signal regressors (p = 400)
- No interest:
 Internal prediction (perfectly attainable)
- *Oddly*: As *t* changes, then *x* (signals) change [but *not y*]

Realistic data structure

- Triplet (y_i, x_i, t_i)
 - Concentration (y)Signal digitizations (x)Covariate (t)
- Digitized optical NIR-spectra, p = 400
 - Ordered structure: 701 to 1100, by 1 nm
- For each mixture *y*:
 - Separate spectra at $\breve{p} = 12$ temperatures (t)
 - 30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5, 65, 70° C
- Consequence: 408 effective observations: $(N = m\breve{p})$
 - The 34 (m) mixtures have 34×12 recordings
- Responses *y*:
 - "Independent," with common σ^2

Simultaneous goals

- Identify and estimate two separate modeling surfaces:
 - 1. Varying-signal coefficient surface (across covariate *t*)
 - 2. A nonlinear varying-link surface (across t'(=t))
- Slice each surface at t
- Linear predictor: signal regressors with $\alpha(t)$
- Further bend mean: use link slice
- Combination: systematic, tractable, competitive
- Aim: reliable prediction + interpretability

Regressor structure: in a "thousand words"

- Unique regressor "fingerprint": center mixture $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
- "Unfold": signal regressor image, by companion temperature (t)

Deliverable: Ethanol

900

1000

0.6

0.4

1100

0.8

4

Temperature (C)

Temperature (C)

Model formulation Varying (penalized) signal regression

$$\mu_i = \sum_{j=1}^p x_{ij} \alpha(v_j, \underbrace{t_i}) = \eta_i$$

Estimate α as smooth surface [Note: *t* with index *i*] 1D signal regressors: x_i Complete set of signals $X (N \times p)$

Varying single-index signal regression

$$\mu_i = f(\eta_i, t_i)$$

Unknown 2D f surface, with own smoothness penalty

Varying-coefficient signal regression portion

$$\mu_{i} = \sum_{j=1}^{p} x_{ij} \sum_{r=1}^{n} \sum_{s=1}^{\breve{n}} B_{r}(v_{j}) \breve{B}_{s}(t_{i}) \gamma_{rs}$$
(1)
$$= \sum_{j=1}^{p} \sum_{r=1}^{n} \sum_{s=1}^{\breve{n}} x_{ij} b_{jr} \breve{b}_{is} \gamma_{rs}$$
$$= \sum_{r=1}^{n} \sum_{s=1}^{\breve{n}} \left(\sum_{j=1}^{p} x_{ij} b_{jr} \right) \breve{b}_{is} \gamma_{rs}$$
$$= \sum_{r=1}^{n} \sum_{s=1}^{\breve{n}} u_{ir} \breve{b}_{is} \gamma_{rs}$$

• *Modified* tensor product expression, now using a basis U = XB.

Smooth surfaces: Tensor product B-spline

Basis dimension: $n \times \breve{n}$ Coefficients: $\Gamma = [\gamma_{rs}]$

Multiple regression format (unfold mountains)

• "Unfold" coefficient surface with tensor product B-splines

 $\operatorname{vec}(\mu) = \mathbf{U}\gamma$

$$\mathbf{U} = U \Box \breve{B} = (U \otimes \mathbf{1}'_{\breve{n}}) \odot (\mathbf{1}'_{n} \otimes \breve{B})$$

- B, \breve{B} bases built on: (wavelength, temperature)
- U has dimension $N\times n\breve{n}$
- Similar approach for link surface

$$\operatorname{vec}(f) = \mathbf{T}\theta$$
$$\mathbf{T} = B \Box \breve{B} = (B \otimes \mathbf{1}'_{\breve{n}_f}) \odot (\mathbf{1}'_{n_f} \otimes \breve{B}$$

- B, \breve{B} bases built on: (η , temperature)
- T has dimension $N\breve{p} \times n_f \breve{n}_f$

8

Penalizing the coefficient surface

- Minimize:
 - $Q_P(\gamma) = \text{Residual SS} + \text{Row Penalty} + \text{Column Penalty}$ $= ||y \mathbf{U}\gamma||^2 + \lambda ||P\gamma||^2 + \check{\lambda}||\check{P}\gamma||^2,$

- Penalties directly on γ (tensor product coefficients)
- Two positive tuning parameters: $\lambda,\breve{\lambda}$
- Compact representation of penalties:

$$P = (D'_d D_d) \otimes I_{\breve{n}}$$
 and $\breve{P} = I_n \otimes (D'_{\breve{d}} D_{\breve{d}})$

Penalties in "action" (coefficient surface)

VPSR explicit solution (use rich basis):

$$\hat{\gamma} = (\mathbf{U}'\mathbf{U} + \lambda P'P + \breve{\lambda}\breve{P}'\breve{P})^{-1}\mathbf{U}'y$$

The penalties, more specifically

- Spirit of P-splines
- Must also carefully arrange ("stack") penalties
- Block diagonal to break (e.g. row to row) linkages:
 - $P = D \otimes I_{\breve{n}}$
 - $\breve{P} = I_n \otimes D$
 - Low dimensional example:

13

Bringing in \boldsymbol{f}

Modified objective:

$$Q_P^{\star} = ||y - f(\overrightarrow{\mathbf{U}\gamma}, t)||^2 + \lambda ||P\gamma||^2 + \breve{\lambda} ||\breve{P}\gamma||^2 + \lambda_f ||P_f\theta||^2 + \breve{\lambda}_f ||\breve{P}_f\theta||^2$$

- f two-dimensional (P-spline) smoothing of y on (η,t)
- 2D surface imbedded within another 2D surface
- f has own tuning parameters: λ_f , $\breve{\lambda}_f$
- Bonus: Surface (partial) derivative \dot{f}_∂ easy to compute

12

Estimation, for fixed f [given t]

Approximate:

$$f(\mathbf{U}\gamma,t) \approx f(\mathbf{U}\gamma_0,t) + \dot{f}_{\partial}(\mathbf{U}\gamma_0,t)\mathbf{U}(\gamma-\gamma_0)$$

Objective:

$$\begin{aligned} Q_P^{\star} &\approx ||y - f(\mathbf{U}\gamma_0, t) - \dot{f}(\mathbf{U}\gamma_0, t)\mathbf{U}(\gamma - \gamma_0)||^2 + \lambda ||P\gamma||^2 + \check{\lambda}||\check{P}\gamma||^2 \\ &= ||y^{\star} - \mathbf{U}^{\star}\gamma||^2 + \lambda ||P\gamma||^2 + \check{\lambda}||\check{P}\gamma||^2 \end{aligned}$$

- Boils down to: VPSR($\mathbf{U}^{\star}, y^{\star}, (\lambda, \breve{\lambda}), (D_d, D_{\breve{d}}), (n, \breve{n})$)
- Modified response and regressors:

$$y^{\star} = y - f(\mathbf{U}\gamma_0, t) + \dot{f}_{\partial}(\mathbf{U}\gamma_0, t)\mathbf{U}\gamma_0$$
 and $\mathbf{U}^{\star} = \mathrm{diag}\{\dot{f}_{\partial}(\mathbf{U}\gamma_0, t)\}\mathbf{U}$

16

18

Single-index signal regression (VSISR) algorithm

1. Initializations:

- Choose the tuning parameter values $(\lambda, \check{\lambda}, \lambda_f, \check{\lambda}_f)$ for Steps 1 and 2
- Choose number of knots $(n, \breve{n}, n_f, \breve{n}_f)$
- Choose penalty order (d, d, d_f, d_f)
- Create $\mathbf{U} = U \Box \breve{B}$
- Calculate $\hat{\gamma} = \mathsf{VPSR}(\mathbf{U}, y, (\lambda, \check{\lambda}), (d, \check{d}), (n, \check{n}))$
- 2. Cycle until convergence of $\hat{\gamma}$
 - Estimate \hat{f} surface and the partial derivative \dot{f}_{∂} from $T((\mathbf{U}\hat{\gamma}, t), y, (\lambda_f, \check{\lambda}_f), (d_f, \check{d}_f), (n_f, \check{n}_f))$
 - Obtain y^* and \mathbf{U}^*
 - Update $\hat{\gamma} = \mathsf{VPSR}(\mathbf{U}^{\star}, y^{\star}, (\lambda, \check{\lambda}), (d, \check{d}), (n, \check{n}))$
 - Constrain $\hat{\gamma}/||\hat{\gamma}||$
- 3. Prediction: $\hat{y}^{new} = \hat{f}(\mathbf{u}^{new}\hat{\gamma}, t^{new})$

Basics of fitting algorithm (VSISR)

- Initialize with VPSR(U, y): get $\hat{\gamma}$
- Given $\hat{\gamma}$: get \hat{f} with $T((\hat{\eta}, t), y)$
- Given \hat{f} : get partial derivative and modified y^{\star} , \mathbf{U}^{\star}
- Update $\hat{\gamma}$: VPSR($\mathbf{U}^{\star}, y^{\star}$)
- Regularize norm of $\hat{\gamma}$
- Construct $\hat{\eta} = \mathbf{U}\hat{\gamma}$
- Cycle until convergence

Deliverable: Water

17

Deliverable: Ethanol (again)

Deliverable: Isopropanol

0.8 0.6 Linear predictor

1000

1100

21

(Optimal) tuning parameters

- Four (4) tuning parameters $(\lambda, \check{\lambda}, \lambda_f, \check{\lambda}_f)$: $(v, t), (\eta, t)$
- Data splitting: training, validation, test sets
- Choose λ s to minimize:

$$\mathsf{RMSEV} = \sqrt{\frac{1}{N^{valid}} \sum_{i=1}^{N^{valid}} (y_i - \hat{y}_{vi})^2}$$

• \hat{y}_v : validation prediction, using training parameter estimates

Findings and design details

- Signal coefficients vary dramatically across temperature
 - Light smoothing in temperature direction $(\ddot{\lambda})$
- Link surfaces display moderate torsion
 - Water: nonlinearity that non-varies (perhaps 1D f)
 - Ethanol: nonlinearity that varies (inverted from Water)
 - Isopropanol: identity link perhaps sufficient
- Design parameters
 - Bicubic tensor products (q = 3)
 - Second order penalties (d = 2)
 - Coefficient grid: $n \times \breve{n} = 40 \times 20$
 - Link grid: $n_f \times \breve{n}_f = 10 \times 10$

(External) prediction performance

• Given "optimal" model, evaluate

$$\mathsf{RMSEP} = \sqrt{\frac{1}{N^{test}} \sum_{i=1}^{N^{test}} (y_i - \hat{y}_i)^2}$$

- \hat{y} : test prediction, using combined (train, valid) estimates
- RMSEP is truly external

Idea of prediction performance: RMSEP

Response	VSISR	VPSR	PLS
Water	0.0087	0.0129	0.0367
1,2-ethanediol	0.0094	0.0104	0.0134
3-amino-1-propanol	0.0146	0.0063	0.0099

- Using optimal models
- RMSEP×100: units percent mixture (in stdevs)
- VSISR finds reductions of 33% to 77% (Water)
- VSISR finds reductions of 10% to 30% (Ethanol)

24

Details: data splitting

- m = 34 combinations (16 + 9 + 9)
- 16= m^{train} (3 pure + 12 edge + 1 center)
- $9 = m^{valid} = m^{test}$ (each) interior
- Rank 18 interior: use odd (even) for valid (test)
- Use all \breve{p} temperatures at each split
- Fair and reasonable range of mixture levels
- No extrapolation in external prediction

External prediction with random splitting

Alternative view: full 2D image regressors

- MPSR approach. No slices (multidimensional)
- Use entire image and common coefficient surface
- $\mu_i = \sum_{j=1}^p \sum_{k=1}^{\check{p}} x_{ijk} \alpha(v_j, t_k)$ m = 34 images (each mixture)
- 28

VSISR: Discussion and basic appeal

- Simplicity: doubly-varying coefficient and link surfaces
- Surfaces indexing can identify potentially "important" regions
- Nonlinear structure is targeted, gaining insight
- Surfaces with very general (non-additive) structure
- Highly competitive external prediction ability
- No "black box" algorithm
- No data preprocessing: the entire signals used (with *t*)
- Heavy penalization defaults to polynomial structure
- Managing of severe ill-conditioned model (and collinear data)
- Precision welcomed: the system of equations remains nň

Delineation between VSISR and MSISR

	VPSR/VSISR	MPSR/MSISR	
μ_i :	$\sum_{j=1}^{p} x_{ij} \alpha(v_j, t_i)$	$\sum_{j=1}^{p}\sum_{k=1}^{\breve{p}}x_{ijk}\alpha(v_j,t_k)$	
Data:	(y, X, t)	(y,X)	
length (y) :	$m \breve{p}$	m	
Regressor type:	signal	image	
Dimension X:	$m ec{p} imes p$	m imes p reve p	
Dimension B:	p imes n	$p reve{p} imes n$	
Dimension \breve{B} :	$m ec{p} imes ec{n}$	$p reve{p} imes reve{n}$	
η :	$(XB)\Box \breve{B}\gamma$	$X(B\Box \breve{B})\gamma$	

- Not directly comparable
- Number of "observations" differs by factor of \breve{p}

Future VSISR research

- Models that constrains the sum of mixture concentrations to be one
- Extensions allowing other (smooth) covariates or factors
- Prediction stability during calibration transfer/ robustness
- Generalized linear model approach to VSISR (binary or counts)