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Interval-valued data and OOC
Triangular kernel

One-class classi�cation (OCC) by precise data

Given:

an unlabeled training data x1, ..., xn � X
x is a multivariate input of m features (examples, patterns,
etc.), X is a compact subset of Rm

The learning problem is:

to construct a function f (x) which takes the value +1 in a
�small� region capturing most of the data points and �1
elsewhere

Lev V. Utkin SVM-based classi�cation algorithms with interval-valued data



Statement of the one-class classi�cation problem
Statement of the binary classi�cation problem

Interval-valued data and OOC
Triangular kernel

One-class classi�cation: novelty detection
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Three main models of the OCC

1 Schölkopf et al. 2000, 2001
2 Tax and Duin 1999, 2004
3 Campbell and Bennett 2001
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The main idea for solving the OCC problem by precise data

1 Data points lie on the surface of a hypersphere in feature
space induced by the map φ(x).

2 A hyperplane f (x,w) = hw,φ(xi )i � ρ = 0 separates the data
from the origin with maximal margin, i.e., we want ρ to be as
large as possible so that the volume of the halfspace
hw,φ(xi )i � ρ is minimized.
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The main formal idea for solving the OCC problem

Minimize the risk functional or expected risk

R(w,ρ) =
Z

Rm
l(w, φ(x))dF0(x),

l(w, φ(x)) = max f0, ρ� hw, φ(x)ig � ρν.

v 2 [0; 1] controls the extent of margin errors (smaller v means
fewer outliers are ignored)

The empirical expected risk

Remp(w,ρ) =
1
n

n

∑
i=1
l(w, φ(xi )).
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SVM for the OCC problem (primal form)

The quadratic program:

min
w ,ξ,ρ

1
2
kwk2 + 1

νn

n

∑
i=1

ξi � ρ,

subject to

hw,φ(xi )i � ρ� ξi , ξi � 0, i = 1, ..., n.
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SVM for the OCC problem (Schölkopf et al. 2000, 2001)
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SVM for the OCC problem (dual form, Lagrangian)

The quadratic program:

min
α

1
2

n

∑
i=1

n

∑
j=1

αiαjK (xi , xj ),

subject to

0 � αi �
1

νn
,

n

∑
i=1

αi = 1.

The decision function f :

f (x) = sgn

 
n

∑
i=1

αiK (xi , x)� ρ

!
.

K (xi , xj ) = φ(xi )φ(xj ) is the Gaussian (RBF) kernel.
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A OCC problem statement by interval data

Training set (Ai ), i = 1, ..., n. Every Ai � Rm is the Cartesian

product of m intervals [a(k )i , a(k )i ], k = 1, ...,m.
Reasons of interval-valued data:

Imperfection of measurement tools

Imprecision of expert information

Missing data
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Examples of interval data
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Approaches to interval-valued data in classi�cation

Interval-valued data are replaced by precise values based on
some assumptions, for example, by taking middle points of
intervals (LimaNeto and Carvalho 2008)

The standard interval analysis (Angulo 2008, Hao 2009):

Change of the Euclidean distance between two data points in
the Gaussian kernel by the Hausdor¤ distance between two
hyper-rectangles (Do and Poulet 2005).

Similar models with the Hausdor¤ distance and other
distances (Chavent 2006, Souza and Carvalho 2004, Pedrycz
et al 2008, Schollmeyer and Augustin 2013)

Bernstein bounding schemes (Bhadra et al. 2009)
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Ideas underlying a new model

1 Interval-valued observations produce a set of expected
classi�cation risk measures such that the lower and upper risk
measures can be determined by minimizing and by maximizing
the risk measure over values of intervals.

2 For the lower risk measure (the minimax strategy), it would
be nice to isolate a �linear�programm from the SVM with
variables xi 2 Ai and then to work with extreme points x�i .

3 It is proposed to replace the Gaussian kernel by the
well-known triangular kernel which can be regarded as an
approximation of the Gaussian kernel. This replacement
allows us to get a set of linear optimization problems with
variables xi restricted by intervals Ai , i = 1, ..., n.
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Interval-valued training data and belief functions
(Dempster-Shafer theory)

Lower R and upper R expectations of the loss function l(x) in the
framework of belief functions (Nguyen-Walker 1994, Strat 1990):

R =
n

∑
i=1
m(Ai ) inf

xi2Ai
l(xi ), R =

n

∑
i=1
m(Ai ) sup

xi2Ai
l(xi ).

Basic probability assignments

m : Po(X )! [0, 1], m(?) = 1, ∑
A2Po(X )

m(A) = 1.

m(Ai ) = ci/n.
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Minimax strategy

R(wopt,ρopt) = minw,ρ R(w,ρ) = minw,ρ

 
n

∑
i=1
m(Ai ) sup

xi2Ai
l(xi )

!
.

The minimax strategy (Γ-minimax): we do not know a precise
value of the loss function l , but we take the �worst� value
providing the largest value of the expected risk (Berger 1994,
Gilboa and Schmeidler 1989, Robert 1994).
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Primal optimization problem by interval data (L_2-norm
SVM)

R = sup
xi2Ai

min
w,ρ

 
1
2
kwk2 + 1

nv

n

∑
i=1
max f0, ρ� hw, φ(xi )ig � ρ

!
,

subject to

ξi � ρ� hw,φ(xi )i , ξi � 0, i = 1, ..., n,

xi 2 Ai , i = 1, ..., n.
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Dual optimization problem (Lagrangian) by interval data

sup
xi
max

α

 
�1
2

n

∑
i=1

n

∑
j=1

αiαjK (xi , xj )

!
.

subject to

0 � αi �
1

νn
,

n

∑
i=1

αi = 1, xi 2 Ai , i = 1, ..., n.

How to reduce the problem to the linear (or �approximately�
linear) one?
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The main idea (1)

We approximate the Gaussian kernel by the triangular kernel in
order to get a piecewise linear programm!
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The main idea (2)

K (x, y) = exp

 
�kx� yk

2

σ2

!

+

T (x, y) = max

(
0, 1� kx� yk

1

σ2

)
T (x, y) is almost linear or piecewise linear

Lev V. Utkin SVM-based classi�cation algorithms with interval-valued data



Statement of the one-class classi�cation problem
Statement of the binary classi�cation problem

Interval-valued data and OOC
Triangular kernel

Dual optimization problem (Lagrangian) by interval data

If we �x Lagrange multipliers αi , then we get the following
simple linear programming problem:

sup
xi ,i=1,...,n

 
�1
2

n

∑
i=1

n

∑
j=1

αiαjT (xi , xj )

!
.

subject to xi 2 Ai , i = 1, ..., n.
Its optimal solution is achieved at extreme points or vertices
of the polytope produced by Ai , i.e., at interval bounds.
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A set of Lagrangians

If the number of extreme points is t, then we solve t
quadratic optimization problems by substituting the extreme
points (values x�1, ..., x

�
n) into every problem:

max
α

 
�1
2

n

∑
i=1

n

∑
j=1

αiαj maxf0, 1� kxi � xjk1 /σ2g
!
.

subject to 0 � αi � 1/(vn), ∑n
i=1 αi = 1.

The largest value of the objective function corresponds to the
optimal values x�1, ..., x

�
n and to the optimal parameters αopt.

Lev V. Utkin SVM-based classi�cation algorithms with interval-valued data



Statement of the one-class classi�cation problem
Statement of the binary classi�cation problem

Interval-valued data and OOC
Triangular kernel

The main virtues and shortcomings

1 If we have n interval-valued data consisting of m features,
then the number of extreme points is t = 2nm .

2 However, the approach can be applied to arbitrary convex set
M of data values (to imprecise data), for example,

comparative data (the �rst feature is larger than the second
feature)
functions of data (the sum of two features is less than 1)
in fact, this approach is better for the above cases than for
intervals.
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Again interval-valued data

What to do when we have many intervals?

Idea: There are many variants of OCC SVMs.

It would be nice to �nd a SVM for which constraints do not
depend on observations xi .

This is the linear programming OCC SVM by Campbell and
Bennett, 2001 for which constraints in its dual form do not
depend on vectors of observations. This allows us to represent
the dual optimization problem as a set of simple optimization
problems.
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Campbell and Bennett model by interval data

W (ϕ, b) = sup
xi2Ai

min
ϕi ,b,ξi

 
n

∑
i=1

 
n

∑
j=1

ϕjK (xi , xj ) + b

!
+
1
v

n

∑
i=1

ξi

!

subject to xi 2 Ai , i = 1, ..., n,
n

∑
i=1

ϕi = 1, ϕi � 0.

n

∑
j=1

ϕjK (xi , xj ) + b � �ξi , ξi � 0, i = 1, ..., n.

It turns out that the dual optimization problem and the triangular
kernel provide a more or less simple way for solving the OCC
problem.
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The dual form

A set of n optimization problems

sup
xi2Ai

 
max

α

n

∑
i=1
(1� nαi )K (xi , xj )

!
! min

j=1,...,n
,

subject to

0 � αi �
1
vn
, i = 1, ..., n,

n

∑
i=1

αi = 1.

Let us �x x1, ..., xn.
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The convex sets of solutions

0 � αi �
1
vn
, i = 1, ..., n,

n

∑
i=1

αi = 1.
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The convex set of solutions (extreme points)

Proposition

1 If v � (n� 1)n�1, then T = n extreme points: the k-th
element is v�1(n�1 + v � 1) and n� 1 elements are v�1n�1.

2 If n�1 < v < (n� 1)n�1, then T = s(ns) extreme points:
s 2N is de�ned by

1
n� s + 1 �

1
vn
� 1
n� s .

Extreme points: n� s elements are v�1n�1, one element is
1� (n� s)v�1n�1, and s � 1 elements are 0.

3 If v � n�1, then the unit simplex.
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Change of the kernel

K (x, y) = exp

 
�kx� yk

2

σ2

!

+

T (x, y) = max

(
0, 1� kx� yk

1

σ2

)
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A set of �linear�problems

If α(k ) = (α
(k )
n , ..., α

(k )
n ) is the k-th extreme point, then we get the

linear optimization problems:

max
xi2Ai

�
max

k=1,...,T
min

j=1,...,n
O(j , k)

�
= max

xi2Ai

 
max

k=1,...,T
min

j=1,...,n

n

∑
i=1
(1� nα

(k )
i )max

(
0, 1� kxi � xjk

1

σ2

)!
,

subject to xi 2 Ai , i = 1, ..., n.
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Auxiliary lemma

Lemma (Beaumont,1998)

If [x , x ] � R, x < x, and, if

u =
jx j � jx j
x � x , v =

x jx j � x jx j
x � x ,

we have
8x 2 [x , x ], jx j � ux + v .
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An algorithm

Step 1. E(Mv ) is the set of extreme points α(1), ..., α(T ).
Step 2. Select the k-th extreme point α(k ) from E(Mv ).
Step 3. For j 2 f1, ..., ng and k 2 f1, ...,Tg, solve linear
problems over xi 2 Ai .
Step 3. For j 2 f1, ..., ng, select k�j  argk maxO(j , k).
Step 5. Select j�  argj minO(j , k

�
j ). As a result, we get an

optimal vector (x�1, ..., x
�
n).

Step 6. Now we solve the original Campbell and Bennett model
with (x�1, ..., x

�
n).
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A binary classi�cation problem by precise data

Given: a training set (xi , yi ), i = 1, ..., n
x 2 X is a multivariate input of m features (examples,
patterns, etc.), X is a compact subset of Rm

y 2 f�1, 1g is a scalar output (labels of classes)
The learning problem: to select a function f (x,wopt) from a
set of functions f (x,w) = hw,φ(xi )i+ b parameterized by a
set of parameters w , b, which separates examples of di¤erent
classes y .
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L_2-norm SVM

Primal:

min
ξ,w,b

R = min
ξ,w,b

 
1
2
kwk2 + C

n

∑
i=1

ξi

!
,

s.t. ξi � 0, yi (hw,φ(xi )i+ b) � 1� ξi , i = 1, ..., n.
Dual (Lagrangian):

max
α

 
n

∑
i=1

αi �
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK (xi , xj )

!
,

s.t. ∑n
i=1 αiyi = 0, 0 � αi � C , i = 1, ..., n.
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A binary classi�cation problem by interval-valued data

Given: a training set (xi , yi ), i = 1, ..., n
xi 2 Ai , i = 1, ..., n.
y 2 f�1, 1g is a scalar output (labels of classes)
The learning problem is: to construct a function
f (x) = hw,φ(x)i+ b
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L_2-norm SVM by interval data

This case totally coincides with the OOC SVM and is limited by
the number of extreme points of Ai : t = 2nm

Lev V. Utkin SVM-based classi�cation algorithms with interval-valued data



Statement of the one-class classi�cation problem
Statement of the binary classi�cation problem

L_in�nite-norm SVM by interval data

An interesting L∞-norm SVM proposed by Zhou et al. 2002:

minR = min

 
�r + C

n

∑
i=1

ξi

!
,

subject to

yj

 
n

∑
i=1

αiyiK (xi , xj ) + b

!
� r � ξj , j = 1, ..., n,

�1 � αi � 1, i = 1, ..., n, r � 0, ξj � 0, j = 1, ..., n.
αj , ξj , j = 1, ..., n, r , b are optimization variables
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The dual form is more interesting

The dual form by �xed x1, ..., xn:

min
z

n

∑
i=1
yi

 
n

∑
j=1
zjyjK (xi , xj )

!
,

subject to

n

∑
i=1
zi � 1, 0 � zj � C , j = 1, ..., n,

n

∑
i=1
ziyi = 0.

All x1, ..., xn in the objective function, constraints are have only
variables z1, ..., zn
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The convex sets of solutions

∑n
i=1zi � 1, 0 � zj � C , j = 1, ..., n, ∑n

i=1ziyi = 0.

z1 ! y1 = �1, z2 ! y2 = 1, z3 ! y3 = 1
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The convex sets of solutions

Proposition

Let n� and n+ be numbers of y = �1 and y = 1. t and s:

(2C )�1 < t � min(n�, n+), (2C )�1� 1 � s < min
�
(2C )�1, n�, n+

�
,

The �rst subset:

N1 = ∑min(n�,n+)
t=d1/2C e (

n�
t )(

n+
t )

extreme points: t elements from every class are C, others are 0.
If s � 0, then the second subset:

N2 = (n� � s)(n+ � s)(n�s )(
n+
s )

extreme points: s elements from every class are C, one element
from every class is 1/2� sC , others are 0.
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The �nal optimization problems

min
extreme points z �

min
xi2Ai ,i=1,...,n

n

∑
i=1
yi

 
n

∑
j=1
z�j yjK (xi , xj )

!
,

where we use the triangle kernel

K (xi , xj )! T (x, y) = max

(
0, 1� kx� yk

1

σ2

)
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The Epanechnikov Kernel

Another kernel:

T2(x, y) = maxf0, 1� kx� yk2 /σ2g.
We get a quadratically constrained linear program (QCLP).
Tools: the sequential quadratic programming (Boggs and Tolle
1995), SNOP (Gill et al. 2002)
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Questions

?
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