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Abstract: 

 

In regression models with a larger number of covariates, some kind of regularisation or variable selection 

strategy is typically desired, both to avoid overfitting and to select only "important" covariates. Several popular 

possibilities that try to combine regularisation and variable selection have been developed throughout recent 

years in the context of penalised likelihood approaches. The general idea is to add a penalty term to the 

likelihood that penalises the model complexity and therefore avoids overfitting. Two well-known examples 

include the quadratic penalty (i.e. the L-2-norm of the regression coefficients) and the LASSO (corresponding to 

the L1-norm penalty). While the former has the advantage of allowing for a closed form solution, the so-called 

ridge estimator, the latter allows combining regularisation and variable selection. Due to the shape of the 

contours of the penalty function, "small" covariates can be estimated to be exactly zero when maximising the 

likelihood subject to the LASSO penalty. While efficient algorithms, such as least angle regression for Gaussian 

regression models and modifications for exponential family regression and continuous survival time Coxmodels 

have been developed that allow for the routine estimation of LASSO-penalised regression models, the extension 

to more flexible models is typically difficult. Such extensions are for example required if some covariate effects 

should be modelled in a nonparametric fashion. This leads to semiparametric additive models that combine 

linear effects of covariates that are to be regularised with nonparametric effects of further covariates. Another 

example are geoadditive models that add spatial effects to the semiparametric predictor. The situation becomes 

even more complicated if semiparametric hazard regression models are to be considered. Such models extend the 

Cox model by the possibility to jointly estimate the baseline hazard rate and the covariate effects (modelling the 

baseline hazard rate as a nonparametric function, e.g. based on penalised splines), and also possibly contain 

additional semiparametric or spatial effects. To allow for the inclusion of such non-standard effects in the 

regularisation framework, it is convenient to reformulate the problem in a Bayesian setting. In this case, the 

penalty terms augmented to the likelihood correspond to log-prior terms that express the prior knowledge about 

the regression coefficients. Adding a large penalty then simply means that -- a priori -- we expect a lot of 

regression coefficients to be zero. The most popular priors correspond to a Gaussian prior (ridge regression) and 

a Laplace or Double Exponential prior (LASSO), respectively. The major advantage of the Bayesian formulation 

is not the Bayesian interpretation but that Markov chain Monte Carlo (MCMC) simulation techniques are 

available as a general and versatile tool for estimation. Due to the modular structure of MCMC algorithms, it is 

easy to extend the model at some place without having to re-implement the rest of the estimation algorithm. The 

major drawback of the sampling-based approach is that the sharp variable selection property of the usual LASSO 

approach is lost. This is due to the fact that MCMC does not maximize the posterior (or the penalised likelihood) 

but estimates the posterior expectation or median of the regression coefficients. However, regularisation of the 

regression model still takes place and coefficients corresponding to covariates with minor effect are typically 

shrunken close to zero. 



Based on previous work on semiparametric regression, our aim is consider regression models that combine 

structured additive predictors with the possibility to include regularisation priors for some of the fixed or 

nonparametric effects. As a first step to reach this goal we present results with some priors of the exponential 

power family and priors based on scale mixtures of the normal distribution for the linear model.   


